Translocation of C60 and its derivatives across a lipid bilayer.

نویسندگان

  • Rui Qiao
  • Aaron P Roberts
  • Andrew S Mount
  • Stephen J Klaine
  • Pu Chun Ke
چکیده

Obtaining an understanding, at the atomic level, of the interaction of nanomaterials with biological systems has recently become an issue of great research interest. Here we report on the molecular dynamics study of the translocation of fullerene C60 and its derivative C60(OH)20 across a model cell membrane (dipalmitoylphosphatidylcholine or DPPC bilayer). The simulation results indicate that, although a pristine C60 molecule can readily "jump" into the bilayer and translocate the membrane within a few milliseconds, the C60(OH)20 molecule can barely penetrate the bilayer. Indeed, the mean translocation time via diffusion for the C60(OH)20 molecule is several orders of magnitude longer than for the former. It was also determined that the two different forms of fullerenes, when adsorbed into/onto the bilayer, affected the membrane structure differently. This study offers a mechanistic explanation of that difference and for the reduced acute toxicity of functionalized fullerenes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Computational Study of Interaction of C60-Fullerene and Tris-Malonyl-C60-Fullerene Isomers with Lipid Bilayer: Relation to Their Antioxidant Effect

Oxidative stress induced by excessive production of reactive oxygen species (ROS) has been implicated in the etiology of many human diseases. It has been reported that fullerenes and some of their derivatives-carboxyfullerenes-exhibits a strong free radical scavenging capacity. The permeation of C60-fullerene and its amphiphilic derivatives-C3-tris-malonic-C60-fullerene (C3) and D3-tris-malonyl...

متن کامل

Membranotropic properties of the water soluble amino acid and peptide derivatives of fullerene C60.

The modifying effects of the products of the equimolar addition Of DL-alanine and DL-alanyl-DL-alanine to fullerene C60 on the structure and permeability of the lipid bilayer of phosphatidylcholine liposomes has been studied using the luminescence probe technique. It is shown that these water soluble amino acid and dipeptide derivatives of fullerene (C60-AD) are quenchers of pyrene fluorescence...

متن کامل

Bordetella pertussis adenylate cyclase toxin translocation across a tethered lipid bilayer.

Numerous bacterial toxins can cross biological membranes to reach the cytosol of mammalian cells, where they exert their cytotoxic effects. Our model toxin, the adenylate cyclase (CyaA) from Bordetella pertussis, is able to invade eukaryotic cells by translocating its catalytic domain directly across the plasma membrane of target cells. To characterize its original translocation process, we des...

متن کامل

Protein translocation across biological membranes.

Subcellular compartments have unique protein compositions, yet protein synthesis only occurs in the cytosol and in mitochondria and chloroplasts. How do proteins get where they need to go? The first steps are targeting to an organelle and efficient translocation across its limiting membrane. Given that most transport systems are exquisitely substrate specific, how are diverse protein sequences ...

متن کامل

Non-bilayer lipids stimulate the activity of the reconstituted bacterial protein translocase.

To determine the phospholipid requirement of the preprotein translocase in vitro, the Escherichia coli SecYEG complex was purified in a delipidated form using the detergent dodecyl maltoside. SecYEG was reconstituted into liposomes composed of defined synthetic phospholipids, and proteoliposomes were analyzed for their preprotein translocation and SecA translocation ATPase activity. The activit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 7 3  شماره 

صفحات  -

تاریخ انتشار 2007